

# Bestimmung der Säurekapazität Ks 8.2/4.3 (Carbonat-/Hydrogen-carbonathärte)

#### **Beschreibung**

Die Säurekapazität von Wasser ist ein Maß für seine Fähigkeit, Säuren zu neutralisieren. Die Säurekapazität in natürlichen Gewässern wird hauptsächlich durch Hydroxide, Carbonate und Hydrogencarbonate verursacht.

Die Bestimmung der Säurekapazität Ks 8,2/4,3 ("p- und m-Wert") in Wasser in mmol/L erfolgt durch Titration mit 0.1 mol/L Salzsäure. Der p-Wert entspricht dem Umschlagspunkt von Phenolphthalein (pH 8,2), der m-Wert dem Umschlagspunkt von Methylorange (pH 4,3). Bei sehr geringen p- und m-Werten kann auch eine Salzsäure mit geringerer Konzentration (0,02 mol/L) verwendet werden.

Durch diese Titration kann auch die Carbonat- bzw. die Hydrogencarbonathärte einer Wasserprobe bestimmt werden.

#### Geräte

| Titrator       | TL 5000, TL 7000, TL 7750, TL 7800                  |
|----------------|-----------------------------------------------------|
| Wechselaufsatz | WA 20                                               |
| Elektrode      | A 162 2M-DIN-ID oder A 7780 1M-DIN-ID oder ähnliche |
| Kabel          | L 1 A (nur für Elektroden mit Steckkopf)            |
| Rührer         | Magnetrührer TM 235 oder ähnliche                   |
| Laborgeräte    | Becherglas 150 ml                                   |
|                | Magnetrührstab 30 mm                                |

#### Reagenzien

| 1 | Salzsäure 0.1 mol/l                                   |  |
|---|-------------------------------------------------------|--|
| 2 | Technischer oder DIN/NIST-Puffer pH 4.01              |  |
| 3 | Technischer Puffer 7.00 oder DIN/NIST- Puffer pH 6.87 |  |
| 4 | KCl solution 3 mol/l                                  |  |
|   | Alle Reagenzien sollten mindestens analysenrein sein  |  |

### Durchführung der Titration

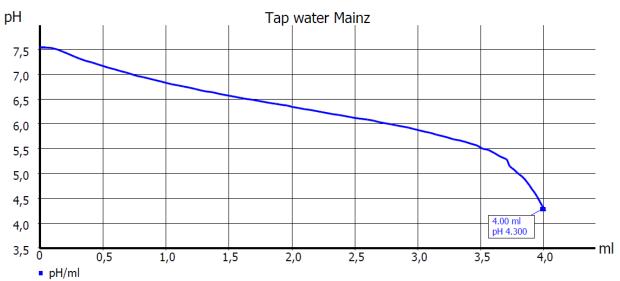
#### Reagenzien

Die Titerbestimmung der HCl 0.1 mol/l erfolgt wie in der Applikationsschrift "Titerbestimmung starker Säuren" beschrieben.

## Reinigung und Aufbewahrung der Elektrode

Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung eignet sich KCl Lösung 3 mol/l oder Elektrolytlösung L 911.

Da auf pH-Endpunkte titriert wird, muss die Elektrode in regelmäßigen Abständen (mindestens wöchentlich) kalibriert werden. Empfehlenswert ist eine 2-Punkt-Kalibration mit Puffern pH 4.01 und 6.87 oder 7.00


#### Probenvorbereitung

100.00 ml der Probe werden in ein 150ml Becherglas gegeben und anschließend mit HCl 0.1 mol/l auf die zwei Endpunkte pH 8.2 und pH 4.3 titriert.

xylem | Titration 101 AN 2

# Titrationsparameter

# Probentitration



| Standardmethode             | Alkalinity (p+m)       |                     |           |
|-----------------------------|------------------------|---------------------|-----------|
| Methodentyp                 | Automatische Titration |                     |           |
| Titrationsmodus             | Endpunkt               |                     |           |
| Messwert                    | pH                     |                     |           |
| Messgeschwindigkeit / Drift | normal                 | Min. Wartezeit      | 2 s       |
|                             |                        | Max. Wartezeit      | 15 s      |
|                             |                        | Messzeit            | 2 s       |
|                             |                        | Drift               | 20 mV/min |
| Startwartezeit              | 0 s                    |                     |           |
| Lineare Schrittweite        | 0.02 ml                |                     |           |
| Dämpfung                    | keine                  | Titrationsrichtung  | fallend   |
| Vortitration                | Aus                    | Wartezeit           | 0 s       |
| Endpunkt 1                  | 8.20 pH                | Delta Endpunkt      | 1.0 pH    |
|                             |                        | Endpunktverzögerung | 10 s      |
| Endpunkt 2                  | 4.30 pH                | Delta Endpunkt      | 1.0 pH    |
|                             |                        | Endpunktverzögerung | 10 s      |
| Max. Titrationsvolumen      | 20 ml                  |                     |           |
| Dosiergeschwindigkeit       | 10 % (10 ml/min)       | Füllgeschwindigkeit | 30 s      |

xylem | Titration 101 AN 3

#### Berechnung:

#### Formel 1

$$p-Value [mmol/l] = \frac{(EP1-B)*T*M*F1}{V*F2}$$

| EP1 |      | Verbrauch des Titrationsmittels am ersten EP |
|-----|------|----------------------------------------------|
| В   | 0    | Blindwert                                    |
| Т   | WA   | Exakte Konzentration des Titrationsmittels   |
| М   | 1    | Molekulargewicht                             |
| V   | 100  | Probenvolumen                                |
| F1  | 10   | Umrechnungsfaktor 1                          |
| F2  | 0.01 | Umrechnungsfaktor 2                          |

#### Formel 2

$$m - Value [mmol/l] = \frac{(EP2 - B) * T * M * F1}{V * F2}$$

| EP1 |      | Verbrauch des Titrationsmittels am zweiten EP |
|-----|------|-----------------------------------------------|
| В   | 0    | Blindwert                                     |
| Т   | WA   | Exakte Konzentration des Titrationsmittels    |
| М   | 1    | Molekulargewicht                              |
| V   | 100  | Probenvolumen                                 |
| F1  | 10   | Umrechnungsfaktor 1                           |
| F2  | 0.01 | Umrechnungsfaktor 2                           |

Soll die Carbonathärte eines Wassers in °dH berechnet werden, so kann die Berechnung nach Formel 3 erfolgen\*.

Formel 3

$$Carbonath\"arte \ [^{\circ}dH] = \frac{(EP2 - B) * T * M * F1 * F3}{V * F2}$$

| EP2 |      | Verbrauch des Titrationsmittels am zweiten EP |
|-----|------|-----------------------------------------------|
| В   | 0    | Blindwert                                     |
| Т   | WA   | Exakte Konzentration des Titrationsmittels    |
| М   | 1    | Molekulargewicht                              |
| V   | 100  | Probenvolumen                                 |
| F1  | 10   | Umrechnungsfaktor 1                           |
| F2  | 0.01 | Umrechnungsfaktor 2                           |
| F3  | 5.6  | Umrechnungsfaktor 3                           |

<sup>\*</sup> Diese Berechnung ist nur anwendbar, wenn gilt: 2 \* p - value < m - value

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

